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Introduction

We want to prove the following theorem :

Theorem 0.1. Let p ≥ 3 be a prime, and ρ : GQ = Gal(Q/Q) → GL2(Zp) be a continuous
representation, unrami�ed outside a �nite set of primes Σ with p /∈ Σ. Suppose that

� ρ is odd, of �nite image, and of projective image A5.

� ρ|GQ(ζp)
is irreducible.

� ρ|GQv
= 1 for v ∈ Σp = Σ ∪ {p}.

� ρ is modular.

Then ρ is modular.

To prove this theorem, one will prove a "R = T" theorem, that is to say that R the deforma-
tion ring of ρ is equal to T , the Hecke algebra. Then ρ, which is a point of R, will correspond to
a point of T , and thus comes from a modular form.

In the rest of the paper, we will �x E a �nite extension of Qp, O its ring of interger, F its
residual �eld, π an unifomizer and ρ : GQ → GL2(O) a representation satisfying the hypothesis
of the theorem. We will denote by ψ the determinant of ρ.

1 Local deformation rings at p

Let A be the category of local artinian O-algebra with residue �eld F, and D2
p : A → Sets be the

functor which assigns to A ∈ A the set of framed deformations of ρ|GQp
= 1 with determinant ψ.

More precisely, an element of D2
p (A) is a representation ρ0 =

(
a b
c d

)
: GQp → GL2(A), with

ρ0 = 1 (ρ0 is the reduction of ρ0 modulo the maximal ideal of A), and det ρ0 = ψ|GQp
.

Two such representations ρ0 =

(
a b
c d

)
and ρ′0 =

(
a′ b′

c′ d′

)
are equivalent if ρ0 = ρ′0 (that

is why we are talking about framed representations).

Proposition 1.1. The functor D2
p is represented by a ring R2

p .

Remark 1.2. Since ρ|GQp
is not absolutely irreducible, we have to take framed representations

to ensure representability.

There is therefore an universal representation ρuniv : GQp → GL2(R2
p ).
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De�nition 1.3. Let D4p be the functor from A to Sets, which assigns to A ∈ A the set{
ρ0 ∈ D2

p (A),∃ line L stable by GQp such that IQp acts trivially on L
}

Proposition 1.4. The functor D4p is represented by a ring R4p .

Again, we have an universal representation GQp → GL2(R4p ), still denoted by ρuniv, and an

universal line Luniv in R4p , stable by GQp with the inertia acting trivially.

An element ρ0 ∈ D4p (A) (for A ∈ A) is conjugated to a representation of the form

(
ϕ1 b
0 ϕ2

)
with

� ϕ1 an unrami�ed character

� ϕ2 = ψ|GQp
ϕ−1

1

� b ∈ ϕ2 · Z1
(
GQp ,

ϕ1

ϕ2

)
Let s ∈ GQp be an element lifting the Frobenius. We will de�ne a cover of the spaceD4p [1/p] = SpecR4p [1/p],
following Taylor.

De�nition 1.5. Let R
4,Up
p [1/p] be the ring de�ned by

R4p [1/p][Up]/
(
U2
p − Trρuniv(s)Up + ψ(s), ρuniv(ts) = ψ(s)U−1

p (ρuniv(t)− 1) + ρuniv(s) ∀t ∈ IQp
)

Note that the last conditions can be rewritten (ρuniv(t)− 1)(ρuniv(s)− ψ(s)U−1
p ) = 0 for all

t in the inertia subgroup.

We will note D
4,Up
p [1/p] = Spec R

4,Up
p [1/p], and f the map D

4,Up
p [1/p]→ D4p [1/p].

Proposition 1.6. The map f is generically an isomorphism.

Proof. We will compute the �ber of f at a point x of D4p [1/p]. Then ρx, the specialization of

ρuniv at x, is conjugated to

(
ϕ1 b
0 ϕ2

)
with ϕ1ϕ2 = ψ|GQp

and ϕ1 unrami�ed.

Case 1 : Suppose that ρx|IQp = 1. Then

f−1(x) = Spec k(x)[Up]/(U2
p − (ϕ1(s) + ϕ2(s))Up + ψ(s))

Over x, f is an etale cover of degree 2 if ϕ1(s) 6= ϕ2(s), and a rami�ed map of degree 2 otherwise.
Case 2 : Suppose that ρx|IQp 6= 1. Then, up to a change of basis, we can assume that

ρx|IQp =

(
1 b
0 1

)
with b 6= 0. If t is an element of the inertia subgroup with b(t) 6= 0, then the kernel of ρx(t)− 1
is exactly the line generated by e1, the �rst vector of the chosen basis. Then the equation
(ρx(t)− 1)(ρx(s)− ψ(s)U−1

p ) = 0 implies Up = ϕ1(s). The map f is thus an isomorphism over
x.
To prove the proposition, we will show that if x is a closed point in case 1, there is a generization x̃

of x which is in case 2. If x is a closed point in case 1, we can assume that ρx =

(
ϕ1 b
0 ϕ2

)
with
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b = 0 on the inertia subgroup. The point x correspond to anO′-point ofD4p = Spec R4p . Let b′ be
a rami�ed cocycle for ϕ1/ϕ2 (it exists for dimensionnal reasons), and consider the representation

de�ned over O′[[X]] by ρx̃ =

(
ϕ1 b+Xϕ2b

′

0 ϕ2

)
. This gives a point x̃ of D4p [1/p] which is a

generization of x, since the reduction of ρx̃ modulo X is equal to ρx. The fact that x̃ is in case 2
follows from b′ being rami�ed.

Remark 1.7. The fact that the map f is of degree 2 in the unrami�ed case corresponds (via an
R = T theorem) to the existence of two companion forms.

2 Local deformation rings at Taylor-Wiles primes

A prime l is said to be a Taylor-Wiles prime if

� l /∈ Σ ∪ {p}

� l ≡ 1 (p)

� ρ(Frobl) has two distinct eigenvalues αl et βl.

Let l be a Taylor-Wiles prime, and Dl : A → Sets the functor of deformations of ρ|GQl
with

determinant ψ. An element of Dl(A) for A ∈ A is then a representation ρ0 : GQl → GL2(A)
lifting ρ|GQl

, with det ρ0 = ψ|GQl
, and two such representations ρ0 and ρ′0 are equivalent if there

exists an element h ∈ GL2(A), congruent to 1 modulo the maximal ideal of A, with ρ0 = hρ′0h
−1.

Proposition 2.1. The functor Dl is represented by a ring Rl.

The deformations of ρ|GQl
are actually very simple.

Proposition 2.2. Let ρ0 be an element of Dl(A), with A ∈ A. Then ρ0 is conjugated to a matrix

of the form

(
αl 0
0 βl

)
with αl and βl two tamely rami�ed characters of GQl lifting respectively

αl and βl.

Proof. Since ρ0 is unrami�ed, the restriction of ρ0 to the inertia subgroup has values into the
elements of GL2(A) which are congruent to 1 modulo the maximal ideal of A. But the group of
these elements is a p-group, and the wild inertia subgroup is a l-group. Therefore, ρ0 is trivial
on the wild inertia subgroup.
Let Pl be the wild inertia subgroup, and let It denote the group IQl/Pl. Then ρ0 is determined
by its values on It and on s, an element lifting the Frobenius element. Let φ = ρ0(s) ; since φ
lifts ρ(Frobl), it has two distinct eigenvalues and is therefore diagonalizable. Moreover, we have
for t ∈ It, sts−1 = tl.
Let t ∈ It, and let τ = ρ0(t). We will show that τ and φ have a common eigenvector. If it is
not the case, let u be an eigenvector for τ for the eigenvalue λ. Then φ−1(u) is an eigenvector
of τ for the eigenvalue λl. Since φ−1(u) is not colinear to u, τ is diagonalizable with eigenvalues

λ and λl. The relation φτφ−1 = τ l shows then that λl
2

= λ, and thus λl
2−1 = 1. Since λ is

congruent to 1 modulo the maximal ideal of A, and p is prime to l + 1 (here we need p 6= 2),
then by Hensel's lemma λl−1 = 1. We deduce that λl = λ, and then τ is a scalar matrix.

We have shown that φ and τ have a common eigenvector. We can then suppose that φ =

(
αl 0
0 βl

)
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and τ =

(
λ b
0 µ

)
. The relation φτφ−1 = τ l, the fact that αl and βl are distinct, and the con-

gruence l ≡ 1 (p) allow us to conclude that b = 0.

Remark 2.3. In the case p = 2, the result is still valid (one shows that if λl 6= λ, then the trace
of φ must be 0, which is impossible since αl + βl = αl − βl 6= 0).

Another proof consists in wrinting φ =

(
αl 0
0 βl

)
, τ = 1 +

(
a b
c d

)
with a, b, c, d in the

maximal ideal of A. Then the relation φτφ−1 = τ l and Nakayama's lemma show that the non-
diagonal terms b and c must be equal to 0.

The universal deformation of ρ|GQl
gives us two characters αl and βl lifting respectively αl

and βl. The character αl|IQl : IQl → R×l gives by class �eld theory a morphism Z×l → R×l .

Since the character is tamely rami�ed, it factors through (Z/lZ)× → R×l . Let ∆l be the p-Sylow
subgroup of (Z/lZ)× (which is non trivial because of the congruence veri�ed by l). We have a
morphism ∆l → R×l . The ring Rl is then naturally an O[∆l]-algebra.

3 Global deformation rings

We have studied the deformations of ρ restricted to GQp , and to GQl for a Taylo-Wiles prime l,
and get rings R2

p and Rl. We will also denote by R2
q the ring of framed deformations of ρ|GQq

for a prime q ∈ Σ.
We will now study the global deformations of ρ.

De�nition 3.1. Let D : A → Sets be the functor which assigns to A ∈ A the set of the defor-
mations of ρ unrami�ed outside Σp and with determinant ψ.

An element of D(A) is a representation ρ0 : GQ → GL2(A) lifting ρ, unrami�ed outside
Σp = Σ ∪ {p}, and with det ρ0 = ψ. Two such representations ρ0 and ρ′0 are equivalent if there
exists h ∈ GL2(A) congruent to 1 modulo the maximal ideal of A with ρ0 = hρ′0h

−1.

Proposition 3.2. The functor D is represented by a ring R.

There is a universal representation ρuniv : GQ → GL2(R). For any set of primes S, we will
denote by QS the maximal extension of Q unrami�ed outside S, and GQ,S = Gal(QS/Q). Since
ρuniv is unrami�ed outside Σp, it factors through GQ,Σp .
We will now compute the tangent space of R, that is to say the set D(F[ε]). Let V = F2, so that
we have ρ : GQ → GL(V ). An element in the tangent space is a morphism ρ1 : GQ → GL2(F[ε])
such that

� ρ1 is equal to ρ modulo ε.

� ρ1 is unrami�ed outside Σp, i.e. factors through GQ,Σp .

� det ρ1 = ψ.

For all g ∈ GQ,Σp , write ρ1(g) = (1 + εf(g))ρ(g), with f(g) ∈ Ad ρ := HomF(V, V ). The fact
that det (1 + εf(g)) = 1 implies that f(g) belongs to Ad0 ρ, the subspace of Ad ρ consisting of
the elements of trace zero. The fact that ρ1 is a morphism gives us the relations

f(g1g2) = f(g1) + ρ(g1)f(g2)ρ(g1)−1

for all g1, g2 ∈ GQ,Σp . If we endow the space Ad ρ with the action ofGQ,Σp de�ne by g· f = ρ(g)fρ(g)−1

for f ∈ Ad ρ and g ∈ GQ,Σp (this is the standard action on the space of morphism between repre-
sentations), then we see that Ad0 ρ is stable under that action, and that f ∈ Z1(GQ,Σp , Ad

0 ρ).
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Proposition 3.3. Let h1 be the dimension of the F-vector space H1(GQ,Σp ,Ad
0 ρ). Then R is

generated over O by h1 elements.

Proof. We have seen that a element in the tangent space has the form ρ1 = (1 + εf)ρ, with
f ∈ Z1(GQ,Σp ,Ad

0 ρ). This representation is equivalent to ρ′1 = (1 − εh)ρ1(1 + εh), with
h ∈ Ad ρ (but up to the addition of a scalar matrix, we can suppose h ∈ Ad0 ρ). The cocycle f is
equivalent to the cocycle f ′ de�ned by f ′(g) = f(g) + g ·h−h. The tangent space D(F[ε]) is thus
isomorphic to H1(GQ,Σp ,Ad

0 ρ). Since the number of generators is bounded by the dimension of
the tangent space, the result follows.

Remark 3.4. The number of relations is bounded by the dimension of H2(GQ,Σp ,Ad
0 ρ).

We have de�ned the global deformation ring. We will relate this ring to the local deformation
rings introduced in the �rst parts. First, we have to modify slighty the global deformation ring.

De�nition 3.5. Let D2 : A → Sets be the functor which assigns to A ∈ A a tuple (ρ0,Mq, q ∈ Σp)
where ρ0 is a deformation of ρ, unrami�ed outside Σp with �xed determinant, and Mq is a frame
for ρ0 at q.

An element of D2(A) is a representation ρ0 : GQ → GL2(A) lifting ρ, unrami�ed outside
Σp, and with det ρ0 = ψ. Two such representations ρ0 and ρ′0 are equivalent if there exists
h ∈ GL2(A) congruent to 1 modulo the maximal ideal of A with ρ0 = hρ′0h

−1, and if moreover
the restrictions of ρ0 and ρ′0 to GQq are equal, for all q ∈ Σp.
The restriction of an element in D2(A) to GQq gives a local framed deformation, for q ∈ Σp. We

thus get a map R2
q → R2, for q ∈ Σp, and thus R2 is a R2

loc := R2
p ⊗̂q∈ΣR

2
q -algebra.

De�ne
H1 = Ker

(
H1(GQ,Σp ,Ad

0 ρ)→ ⊕q∈ΣpH
1(GQq ,Ad

0 ρ)
)

and let h1 = dimF H1.

Proposition 3.6. The algebra R2 is generated over R2
loc by h1 + |Σp| − 1 elements.

Let Q be a set of Taylor-Wiles primes. We note DQ the functor of deformations of ρ, unram-
i�ed outside Q ∪ Σp with determinant ψ. This functor is represented by a ring RQ, which is a
Rl-algebra, for all l ∈ Q. The ring RQ is thus an algebra over

∏
l∈QO[∆l] =: O[∆Q].

We also de�ne D2
Q to be the functor of deformations of ρ, unrami�ed outside Q ∪ Σp with de-

terminant ψ, together with frames at primes in Σp. It is represented by a ring R2
Q, which is an

algebra over R2
loc. De�ne

H1
Q = Ker

(
H1(GQ,Σp∪Q,Ad

0 ρ)→ ⊕q∈ΣpH
1(GQq ,Ad

0 ρ)
)

and let h1
Q = dimF H1

Q.

Proposition 3.7. The algebra R2
Q is generated over R2

loc by h1
Q + |Σp| − 1 elements.

De�ne
H1
⊥ = H1(GQ,Σp ,Ad

0 ρ(1))

where ρ(1) is the Tate twist of ρ, and

H1
⊥,Q = Ker

(
H1(GQ,Σp∪Q,Ad

0 ρ(1))→ ⊕q∈ΣpH
1(GQq ,Ad

0 ρ(1))
)

We will note h1
⊥ = dimF H1

⊥ and h1
⊥,Q = dimF H1

⊥,Q. More generally, we will denote by hi(−)

the F-dimension of a cohomology group Hi(−). The Poitou-Tate formula gives

h1
Q − h1

⊥,Q = h0(GQ,Ad
0 ρ)− h0(GQ,Ad

0 ρ(1)) +
∑
l∈Q

h2(GQl ,Ad
0 ρ)− h0(G∞,Ad

0 ρ)

with G∞ = Gal(C/R).
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Proposition 3.8. We have h1
Q − h1

⊥,Q = |Q| − 1.

Proof. The space H0(GQ,Ad
0 ρ) consists of the elements of Ad0 ρ �xed by GQ, i.e. the en-

domrorphisms of trace zero commuting with ρ. Since ρ is absolutely irreducible, we have
h0(GQ,Ad

0 ρ) = 0. Similarly, we have h0(GQ,Ad
0 ρ(1)) = 0. For l ∈ Q, we have by Galois

duality h2(GQl ,Ad
0 ρ) = h0(GQl ,Ad

0 ρ(1)). Since ρ(1) restricted to GQl is the sum of two
distinct characters, we have h0(GQl ,Ad

0 ρ(1)) = 1. Finally, since ρ is odd, we have that ρ(c)

is conjugated to

(
1 0
0 −1

)
, where c is the complex conjugation. By consequence, we have

h0(G∞,Ad
0 ρ) = 1.

It is possible to construct systems of Taylor-Wiles primes, which will be more and more
precise.

Theorem 3.9. For all n ≥ 1, there exists a set of Taylor-Wiles primes Qn such that

� |Qn| = h1
⊥.

� ∀l ∈ Qn, l ≡ 1 (pn).

� h1
⊥,Qn = 0.

Consequently, we have h1
Qn

= h1
⊥,Qn + |Qn| − 1 = h1

⊥ − 1.

Corollary 3.10. The algebra R2
Qn

is generated over R2
loc by h1

⊥ + |Σp| − 2 elements.

The important thing is that the number of generators stays the same when n varies.
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